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GPHM: Gaussian Parametric Head Model for
Monocular Head Avatar Reconstruction

Yuelang Xu, Zhaoqi Su, Qingyao Wu, Yebin Liu

Abstract—Creating high-fidelity 3D human head avatars is crucial for applications in VR/AR, digital human, and film production.
Recent advances have leveraged morphable face models to generate animated head avatars from easily accessible data, representing
varying identities and expressions within a low-dimensional parametric space. However, existing methods often struggle with modeling
complex appearance details, e.g., hairstyles, and suffer from low rendering quality and efficiency. In this paper we introduce a novel
approach, 3D Gaussian Parametric Head Model, which employs 3D Gaussians to accurately represent the complexities of the human
head, allowing precise control over both identity and expression. The Gaussian model can handle intricate details, enabling realistic
representations of varying appearances and complex expressions. Furthermore, we presents a well-designed training framework to
ensure smooth convergence, providing a robust guarantee for learning the rich content. Our method achieves high-quality,
photo-realistic rendering with real-time efficiency, making it a valuable contribution to the field of parametric head models. Finally, we
apply the 3D Gaussian Parametric Head Model to monocular video or few-shot head avatar reconstruction tasks, which enables instant
reconstruction of high-quality 3D head avatars even when input data is extremely limited, surpassing previous methods in terms of
reconstruction quality and training speed.

Index Terms—Gaussian Splatting, Parametric Model, Head Avatar

✦

1 INTRODUCTION

C REATING high-fidelity 3D human head avatars holds
significant importance across various fields, including

VR/AR, telepresence, digital human interfaces, and film
production. The automatic generation of such avatars has
been a focal point in computer vision research for many
years. Recent methods [1]–[10] can create an animated head
avatar through conveniently collected data such as a monoc-
ular video data or even a picture [11], [12]. Serving as the
most fundamental tool in these methods, the 3D morphable
models (3DMM) [13], [14], which represent varying identi-
ties and expressions within a low-dimensional space, have
been proven to be a highly successful avenue in addressing
this challenging problem.

Since the traditional parametric 3DMMs are typically
limited by the topology of the underlying template mesh
and only focus on the face part, some works [15]–[18]
propose to use implicit Signed Distance Field (SDF) as the
geometric representation to model the entire head. Despite
their flexibility, these methods fall short in recovering high-
frequency geometric and/or texture details like complex
hairstyles, glasses or accessories. On the other end of the
spectrum, Neural Radiance Field (NeRF) [19] based meth-
ods [20], [21] learn parametric head models by directly
synthesizing photo-realistic images, thus eliminating the
need of geometry modeling. However, NeRF is built upon
volumetric rendering, which involves sampling and in-
tegrating points distributed throughout space. Therefore,
NeRF-based methods typically suffer from low rendering
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efficiency and have to trade it off with rendering resolution,
thereby greatly reducing rendering quality. Moreover, skip-
ping geometric reconstruction would probably lead to poor
3D consistency.

More recently, 3D Gaussian Splatting (3DGS) [22], which
uses explicit Gaussian ellipsoids to represent 3D scenes, has
attracted significant attention from the research community.
Experiments have verified the superior quality of the ren-
dered results and excellent rendering efficiency compared
to previous NeRF-based or surface-based methods even on
dynamic scenes [23]–[26]. Motivated by this progress, we
propose a novel 3D Gaussian Parametric Head Model for
head avatar modeling, which, for the first time, marries the
power of 3DGS with the challenging task of parametric head
modeling. Our 3D gaussian parametric head model decou-
ples the control signals of the head into the latent spaces of
identity and expression, as is also done in SDF-based face
model NPHM [17]. These latent spaces are then mapped
to the offsets of the Gaussian positions, which effectively
represent the variance of shape and appearance of different
identities and expressions. Benefiting from the differentia-
bility of Gaussian splatting, our model can be learned from
multi-view video data corpus in an end-to-end manner,
without relying on geometry supervision, achieving high
quality monocular head avatar reconstruction results.

Unfortunately, training our 3D Gaussian parametric
head model is not quite straightforward, because Gaussian
ellipsoids are unstructured and each Gaussian ellipsoid has
its own independent learnable attribute. Such a characteris-
tic makes 3DGS powerful in overfitting a specific object or
scene, but poses great challenges for generative head mod-
eling. Without proper initialization and regularization, the
learned parametric head model may suffer from unstable
training or a large number of Gaussian points becoming
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redundant and noisy, as shown in Fig. 6.
To overcome these challenges, we propose a well-

designed two-stage training strategy to ensure smooth con-
vergence of our model training. Specifically, we first roughly
train all the networks on a mesh-based guiding model.
Subsequently, the network parameters are migrated to the
Gaussian model, and all Gaussian points are initialized with
the trained mesh geometry to ensure that they are located
near the actual surface. Compared to naive initialization
with FLAME [14], our initialization strategy leads to a better
guess of the positions of Gaussian points, making the sub-
sequent training of the model converge stably and the areas
like hairs better recovered. Moreover, we propose to use 3D
landmark loss to supervise the deformation of the model
learning expressions, which can speed up the convergence
and avoid artifacts under exaggerated expressions. Lastly,
our method supports training from both 3D head scans and
multi-view 2D face datasets, which enhances the versatility
and comprehensiveness of facial data collection and model
training.

After training on large corpus of multi-view head videos,
our parametric Gaussian head model can generate photo-
realistic images that accurately depict the diverse range of
facial appearances, naturally handling complex and exag-
gerated expressions, while also enabling real-time render-
ing. Additionally, our method supports single-image fitting
and surpasses previous techniques in both reconstruction
accuracy and identity consistency. Furthermore, the model
resulting from our fitting process allows for the control
of various expressions while maintaining naturalness and
consistent identity even under exaggerated expressions.

A preliminary version of this work has been published in
ECCV 2024 [27], in which we propose a novel 3D Gaussian
Parametric Head Model (GPHM) enabling photo-realistic
representation of human heads and high-quality face avatar
from a single image. However, the preliminary work [27]
mainly focuses on representing a parametric head model,
lacking ease of use and robustness for downstream tasks
like head reconstruction from input images. In the current
version, we present GPHMv2, a head avatar reconstruction
framework, which supports instant and robust head avatar
reconstruction from monocular video or even few-shot im-
age inputs. The proposed head reconstruction pipeline sur-
passes previous NeRF-based [2]–[5] or 3DGS-based [28], [29]
head reconstruction methods in reconstruction quality and
training speed. Moreover, previous methods heavily rely on
the 3DMM models [13], [14], suffering from the coupling of
expression and shape, and perform poorly in cross-identity
reenactment (see Sec 4). And due to lacking sufficient prior
information, these methods can hardly support few-shot or
one-shot head reconstruction like our method.

We extend the preliminary version [27] as follows.
Firstly, we extend our network structure and adjust data
preprocessing for a more expressive and generalizable head
model. Specifically, to better disentangle the expression and
head motion of the avatar and capture more detailed expres-
sion information, we introduce a facial expression encoder
and a non-face motion encoder to extract latent expressions
and latent motions from images (see Section 3.2, 3.3). These
components are jointly trained with the other network com-
ponents to enable end-to-end avatar animation via image

reconstruction results. However, training the model in an
end-to-end self-reconstruction manner and directly using
the input image as the expression condition inevitably leads
to the leakage of identity-related appearance information
into the latent expression codes. To address this, we utilize
LivePortrait [30] to synthesize a large number of images
with different identities but the same expression as the
additional expression condition during training, effectively
eliminating this issue (see Section 3.1). Therefore, the model
can more accurately isolate and capture expression features
independently of identity, leading to more precise and ver-
satile avatar animations.

Secondly, we enhance the functionality of the prelimi-
nary model by designing a few-shot 3D head avatar recon-
struction framework. Leveraging the pre-trained extended
GPHMv2 model, a high-quality 3D head avatar can be
rapidly reconstructed using only a small amount of monoc-
ular data. Specifically, we optimize our model for a single
identity-specific avatar in a two-stage process, from coarse
to fine. In the first stage, we focus solely on optimizing
the identity code to provide a rough initialization. In the
second stage, we refine the model by optimizing the neutral
Gaussian attributes and motion-related networks to capture
finer details. Also in this stage, we introduce a tiny network
to accurately model the expression-related dynamic changes
in color and Gaussian attributes. Finally, the well-finetuned
head avatar can be driven by any video fed into the en-
coders.

The contributions of our method can be summarized as:

• We propose 3D Gaussian Parametric Head Model,
a novel parametric head model which utilizes 3D
Gaussians as the representation, enabling photo-
realistic rendering quality and real-time rendering
speed.

• We propose a well-designed training strategy to
ensure that the Gaussian model converges stably
while learning rich appearance details and complex
expressions efficiently.

• We extend our preliminary proposed 3D Gaussian
Parametric Head Model to the more expressive and
generalizable GPHMv2, which enables instant head
avatar reconstruction from monocular video or even
few-shot images, achieving state-of-the-art quality
and training time.

2 RELATED WORK

Parametric Head Models. Parametric head models are
used to represent facial features, expressions, and identities
effectively and efficiently. They allow for the creation of
realistic human faces with adjustable parameters, making
them essential in computer graphics, animation, and virtual
reality. Therefore, research in this field has always been a
hot topic. Traditional 3D Morphable Models(3DMM) [13],
[14], [31]–[33] are constructed by non-rigidly registering
a template mesh with fixed topology to a series of 3D
scans. Through this registration process, a 3DMM can be
computed using dimensionality reduction techniques such
as principal component analysis (PCA). The resulting para-
metric space captures the variations in facial geometry and
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Fig. 1. We utilize hybrid datasets comprising captured multi-view video data and rendered image data from 3D scans for training our model. The
trained model can be manipulated using decoupled identity and expression codes to produce a diverse array of high-fidelity head models. When
presented with an image, our model can be adjusted to reconstruct the portrait in the image and edit the expression according to any other desired
expressions.

appearance across a population. However, while 3DMMs
offer a powerful way to represent faces, they do have lim-
itations. These models rely heavily on the correspondence
between the 3D scans and the template for accurate fitting
and may struggle to represent local surface details like
wrinkles or hair styles that deviate significantly from the
template mesh. Recent advances in implicit representation
have led to the great development of neural parametric
head models. Some methods [15], [17], [18], [34] propose
implicit Signed Distance Field (SDF) based head models,
which are not constrained by topology thus can recover
more complex content like hair compared to previous mesh-
based Methods. Other methods [20], [21], [35], [36] propose
to use NeRF [19] as the representation of the parametric
head models, which can directly synthesize photorealistic
images without geometric reconstruction. Cao, et al. [37]
use a hybrid representation [38] of mesh and NeRF to train
their model on unpublished large-scale light stage data.
However, rendering efficiency is typically low in NeRF-
based methods, often resulting in a trade-off with rendering
resolution.

3D GAN based Head Models. 3D Generative Adversarial
Networks (GANs) have revolutionized the field of computer
vision, particularly in the domain of human head and face
modeling, enabling the generation of face avatars from input
images. Traditional methods often require labor-intensive
manual work or rely on multi-view images to create 3D
models. 3D GANs as a more automated and data-driven
approach, which are just trained on single-view 2D images
but generate detailed and realistic 3D models of human
head [39]–[44]. Panohead [45] additionally introduces im-
ages of hairstyles on the back of characters and trains a
full-head generative model. Based on the previous methods,
IDE-3D [46] proposes to use semantic map to edit the 3D
head model. Next3D [47] and AniFaceGAN [48] extend to
uses the FLAME model [14] to condition the generated head
model, so that the expression and pose of the generated
head model can be controlled. AniPortraitGAN [49] further
replaces FLAME model with SMPLX model [50] to generate
upper body avatars, thus the shoulders and the neck can
also be controlled. These 3D GAN-based models primarily
leverage the coarse FLAME model for expression control,

often leading to a loss of expression details in the generated
faces. In contrast, our method directly learns the expression
distribution from the dataset, capturing more facial appear-
ance details.

3D Gaussians-based Head Models. Recently, 3D Gaussian
splatting [22] has shown superior performance compared to
NeRF, excelling in both novel view synthesis quality and
rendering speed. Several methods have expanded Gaussian
representation to dynamic scene reconstruction [23]–[26].
For human body avatar modeling, recent approaches [51],
[52] propose training a 3D Gaussian avatar animated by
SMPL [53] or a skeleton from multi-view videos, surpassing
previous methods in rendering quality and efficiency. In
the realm of human head avatar modeling, recent tech-
niques [54]–[57] also utilize 3D Gaussians to create high-
fidelity and efficient head avatars. These approaches centers
on the creation of a high-fidelity person-specific avatar using
data of a single person. In contrast, our method focus
on a versatile prior model that can accommodate varying
appearances. Once trained, our model is also capable of
person-specific avatar reconstruction by fitting to the input
image data provided.

Monocular 3D Head Avatar Reconstruction. 3D head
avatars reconstruction from monocular videos is also a
popular yet challenging research topic. Early methods [58]–
[63] optimize a morphable mesh to fit the training video.
Recent methods [8], [64] leverage neural networks to learn
non-rigid deformation upon 3DMM face templates [13],
[14], thus can recover more dynamic details. However, such
methods are not flexible enough to handle complex topolo-
gies. IMavatar [6] proposes to learn head avatars with im-
plicit SDF-based geometry [65], [66], thus getting rid of the
topology limitation of the mesh templates. PointAvatar [7]
combines the explicit point cloud with the implicit repre-
sentation to improve the quality of the rendered images.
As NeRF [19] demonstrates its ability to synthesize high-
fidelity novel view images, several methods [2], [9], [10],
[67]–[70] attempt to exploit such representation for neural
head modeling. Furthermore, the voxel-based data structure
is introduced for training acceleration [3]–[5]. However,
these representations usually suffer from the loss of high-
frequency details. To overcome, recent methods [28], [29],
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Fig. 2. The overview of our GPHM model. Our training strategy can be divided into a Guiding Geometry Model for initialization, and a final
3D Gaussian Parametric Head Model. Deformations of each model are further decoupled into identity-related, expression-related and non-face
deformations. For the expression condition images, we input crop groundtruth face image or synthesized images via LivePortrait [30]. For the non-
face motion condition, we input groundtruth images with the face area masked. The renderer involves a convolutional refine network Ψ, which finally
transfers the feature maps from mesh/Gaussian renderer to fine portrait images. During inference, our output exclusively comes from the Gaussian
model.

[71] introduce 3D Gaussian representation [22] to model the
head avatars, thereby improving the reconstruction qual-
ity while reducing the training time requirement. How-
ever, despite these advancements, there is still potential for
further enhancement in reconstruction quality and train-
ing/inference speed.

3 METHOD

In this section, we present the 3D Gaussian Parametric Head
Model. In contrast to previous mesh-based or NeRF-based
models, initializing and training Gaussian-based models
pose distinct challenges. This section introduces the dataset
and preprocessing, the carefully designed guiding geometry
model, the Gaussian Parametric Head Model, and outlines
their respective training processes. Additionally, we will
provide the training details and demonstrate how to utilize
our model for head avatar reconstruction when given an
input monocular video.

3.1 Data Preprocessing

We used 4 datasets for our model training, including a
multi-view video dataset NeRSemble [72], a large-scale
monocular video dataset VFHQ [73], two 3D scans datasets
NPHM [17] and FaceVerse [33]. We do not use the 3D
geometry of the scans directly, but render them into multi-
view images and use only the images from the 4 datasets

Fig. 3. We generate additional expression condition images via LivePor-
trait [30] for training the appearance decoupled expression encoder.

as supervision. To better utilize these 4 different datasets,
preprocessing is necessary. First, we resize the images to 512
resolution and adjust the camera parameters. Note that for
the monocular videos in VFHQ dataset, we assign a global
default value to the camera parameters.

Then, we use BackgroundMattingV2 [74] to extract the
foreground characters in the NeRSemble dataset and record
the masks. For the VFHQ dataset, we use RobustVideoMat-
ting [75] to segment foreground and masks. This step is not
required for the two synthetic datasets. Next, we use face
alignment [76] to detect 2D landmarks in all the images.
Through these 2D landmarks, we fit a Basel Face Model
(BFM) [13] for each expression of each identity, and record
the head pose and 3D landmarks of the BFM. For all the
images in which the facial area is visible, we extract the face
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region images through the 2D landmarks and the non-face
images by masking the face region.

Finally, we use LivePortrait [30] to synthesize additional
expression condition images. Specifically, for each frontal
face image in the training set, we randomly sample another
from VFHQ. The original image provides the expression
as the driving image, and the sampled image provides the
appearance as the source image, creating a new image with
the same expression but a random identity. All synthesized
images are used as additional expression condition images
to train the expression encoder for better generalization as
described in Section 3.2.

We will use the processed camera parameters, images,
masks, head pose, 3D landmarks, face images, non-face
images, and synthesized expression condition images men-
tioned above to train our parametric head model.

3.2 Model Representation

The representation of 3D Gaussians poses challenges due
to its unordered and unstructured nature, leading to diffi-
culties in the continuous spread of gradients to neighboring
points in space during backpropagation. This often results
in convergence failure when Gaussians are randomly ini-
tialized. On the other hand, surface-based representations
such as mesh are just suitable for rough geometry learn-
ing. A direct idea is to utilize an existing 3DMM, such as
FLAME [14], as the initial position for the points in 3D
Gaussian splatting [22]. However, this coarse initialization
still fails to converge the positions of 3D points to the
correct locations, as shown in Fig. 6. The network tends to
alter the shape of the ellipsoid to achieve a suitable fitting
result, leading to inaccurate geometry of the point cloud and
blurriness in the rendered image.

To address this problem, a more detailed initialization
process is necessary for capturing the diverse head varia-
tions using 3D Gaussian splatting. Specifically, we draw in-
spiration from Gaussian Head Avatar [54] and leverage the
implicit signed distance field (SDF) representation to train
a guiding geometry model. This guiding geometry model
serves as the initial value for the Gaussian model, providing
a more effective starting point for the optimization process.
We define the initial model as Guiding Geometry Model and
the refined model as 3D Gaussian Parametric Head Model.

In addition, setting a separate expression code for each
frame of data to model dynamic motion like the preliminary
version [27] will cause facial expressions to be coupled with
body parts. And as more data is added, it becomes more
difficult to optimize a large number of discrete latent codes.

Therefore, we first use two separate latent codes: facial
expression codes and non-face motion codes to control
facial expressions and non-facial movements respectively.
Furthermore, we introduce two additional motion encoders
accordingly to avoid directly optimizing those latent codes.
A face encoder extracts facial expression codes from face
images, while a non-face encoder extracts non-face motion
codes from non-face images. Moreover, the 2 encoders can
be directly used to extract motion from driving images via
a single forward pass in subsequent tasks.

Guiding Geometry Model. The guiding geometry
model receives an identity code zid, a face image Iface

for expression condition and a non-face image Inonface for
controlling non-face area as input, producing a mesh with
vertices V , faces F , and per-vertex color C that aligns with
the specified identity and expression. To achieve this, we use
an MLP denoted as fmean(·) to implicitly model the SDF,
which represents the mean geometry:

s, γ = fmean(x), (1)

where s denotes the SDF value, γ denotes the feature from
the last layer and x denotes the input position. Then, we
convert the implicit SDF through Deep Marching Tetrahedra
(DMTet) [77] into an explicit mesh with vertices positions
V0, per-vertex feature Γ and faces F . Next, we need to
transform the mean shape into a neutral-expression shape
on condition of the input identity code zid. To inject identity
information into the vertices of the mesh, we first use an
injection MLP finj(·), which takes the identity code zid and
the per-vertex feature Γ as input and produces the identity-
conditioned per-vertex feature vectors H = finj(z

id,Γ).
Subsequently, utilizing a tiny MLP fid(·), we predict the
displacement δVid for each vertex. This displacement is used
to transform the mean shape into the neutral-expression
shape conditioned on the id code zid.

δVid = fid(H). (2)

After completing deformations related to identity, the
next step is to capture the deformation induced by facial
expressions and head pose. Here, the same as GHA [54],
we define the human face area as the canonical reference
system. In addition to facial expression changes, we need
to consider the movement of non-face areas such as the
neck and body relative to the head while the face is rigidly
transformed. Specifically, we introduce 2 motion encoders
Eexp(·) for face area, Enf (·) for non-face area, and 2 tiny
MLPs fexp(·) for face area and fnf (·) for non-face area.
The facial expression encoder takes the condition face image
Iface as input and predict the facial expression code zexp.
The non-face motion encoder takes the condition non-face
image Inonface as input and predict the non-face motion
code znf . Note, during training, the face image can be from
any one view in the current frame or the synthesized expres-
sion condition images. Then, fexp(·) takes the feature vec-
tors H obtained in the previous step and the expression code
zexp from the expression encoder as input, and outputs the
displacement δVexp = fexp(H, zexp) for each vertex. fnf (·)
takes the feature vectors H and a non-face motion code znf

as input, and outputs the displacement δVnf = fnf (H, znf )
for each vertex. Using this displacement, we update the
vertex positions to Vcan. Additionally, we feed the same
feature vectors H to a color MLP fcol(·), to predict the 32-
channel color C for each vertex. The vertex positions to Vcan

and 32-channel color C can be described as:

Vcan = V0 + δVid + λexp(V0)δVexp + λnf (V0)δVnf , (3)
C = fcol(H). (4)

λexp(·) and λnf (·) respectively indicate whether the vertices
belong to the face area, affected by the facial expression
code, or belong to the non-face area, affected by the non-
face motion code.
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Here, we assume that the vertices closer to the 3D
landmarks are more affected by the expression code and
less affected by the non-face motion code, while the oppo-
site is true for the vertices far away. Specifically, The 3D
landmarks P 0 of the canonical model are first estimated
through the 3DMM model in the data preprocessing 3.1 and
then optimized later. We calculate the above weight λexp(·)
and λnf (·) as follows:

λexp(x) =


1, dist(x,P 0) < t1
t2−dist(x,P 0)

t2−t1
, dist(x,P 0) ∈ [t1, t2]

0, dist(x,P 0) > t2

with λnf (x) = 1−λexp(x). And x ∈ V0 denotes the position
of one vertex. dist(x,P 0) denotes the minimum distance
from the point x to the 3D landmarks P 0. t1 = 0.1 and
t2 = 0.12 are predefined hyperparameters when the length
of the head is set to approximately 1.

In practice, we find it difficult and unnecessary to learn
expression-related color changes in a generalizable head
model, as feeding the expression code to the color MLP
may lead to the coupling of appearance and expression.
Therefore, we do not consider expression-related color
changes during the head model training stage, but model
such changes in the downstream reconstruction task (see
Section 3.5).

Finally, we utilize the estimated head pose parameters
R and T obtained during data preprocessing to transform
the mesh from the canonical space to the world space
V = R ·Vcan+T . After generating the final vertex positions,
colors, and faces {V,C, F} of the mesh, we render the mesh
into a 512-resolution 32-channel feature map IF and a mask
M through differentiable rasterization with a given the
camera pose. Subsequently, the feature map is interpreted as
a 512-resolution fine RGB Ifine image through a lightweight
convolutional refine network Ψ(·), as shown in Fig. 2.

3D Gaussian Parametric Head Model. The Gaussian
model also takes an identity code zid, a face image Iface
and a non-face image Inonface as input, producing the
positions X , color C , scale S, rotation Q and opacity A of
the 3D Gaussians. Similar to the guiding geometry model,
we initially maintain an overall mean point cloud, with the
mean positions X0. However, we no longer generate the
per-vertex feature Γ through fmean(x). Instead, we directly
bind it to the Gaussian per-point feature as optimizable
variables Γ0. This is possible since the number of Gaussian
points is fixed at this stage. Then we need to transform
the mean point cloud into a neutral-expression point cloud,
conditioned by the id code zid. To achieve this, we utilize
the same injection MLP finj(·) and identity deformation
MLP fid(·) defined in the guiding geometry model, which
can generate feature vectors H = finj(z

id,Γ0) that encode
identity information for each point and predict the identity-
related displacement δXid of each point. Then, we also need
to predict the facial expression conditioned displacement
δXexp, the non-face displacement δXnf , the resulting posi-
tions Xcan and the 32-channel color C of each point, similar
to the approach presented in the guiding geometry model.

These can be described as:

δXid =fid(H), (5)
δXexp =fexp(H,Eexp(Iface)), (6)
δXnf =fnf (H,Enf (Inonface)), (7)
Xcan =X0 + δXid + λexp(X0)δXexp+ (8)

λnf (X0)δXnf , (9)
C =fcol(H). (10)

Unlike the representations of SDF and DMTet, Gaussians
have additional attributes that need to be predicted. Here,
we introduce a new MLP to predict Gaussian attributes in
the canonical space, including the scale S, rotation Qcan,
and opacity A. In order to ensure the stability of the gener-
ated results, we refrain from directly predicting these values.
Instead, we predict their offsets {δS, δQ, δA} relative to the
overall mean values {S0,Q0,A0}:

{S,Qcan, A} = {S0,Q0,A0}+ fatt(H). (11)

Also at this stage, we do not consider expression-related
Gaussian attributes changes as color changes mentioned
above.

Following this, we utilize the estimated head pose pa-
rameters R and T , obtained during data preprocessing,
to transform the canonical space variables Xcan and Qcan

into the world space: X = R · Xcan + T, Q = R · Qcan.
For model rendering, we leverage differentiable render-
ing [22] and neural rendering techniques to generate im-
ages. The generated 3D Gaussian parameters, which include
{X,C, S,Q,A}, are conditioned by the identity code zid,
the face image Iface and the non-face image Inonface.
Finally, we input this feature map into the same refine
network Ψ(·) of the guiding geometry model to generate
a 512-resolution RGB image.

In the 3D Gaussian Parametric Head Model, we lever-
age the previously trained guiding geometry model to
initialize our variables and networks, rather than initiat-
ing them randomly and training from scratch. Specifically,
we initialize the Gaussian positions X0 using the vertex
positions of the mean mesh V0. Meanwhile, we gener-
ate the per-vertex feature Γ from fmean(x) at the begin-
ning and bind it to the points as an optimizable variable
Γ0 as described above. Additionally, all identity codes
zid, 3D landmarks P 0 and the networks Eexp(·), Enf (·),
{finj(·),fid(·),fexp(·),fnf (·),fcol(·),Ψ(·)} are directly
inherited from the guiding geometry model. Note that, the
attribute MLP fatt(·) is a newly introduced network, hence
it is initialized randomly. Finally, the overall mean values of
the Gaussian attributes {S0,Q0,A0} are initialized follow-
ing the original 3D Gaussian Spatting [22].

3.3 Loss Functions
To ensure the accurate convergence of the model, we employ
various loss functions as constraints, including the basic
photometric loss and silhouette loss, to enforce consistency
with ground truth of both the rendered fine images Ifine
and the rendered masks M :

Lfine = ||Ifine − Igt||1, (12)
Lsil = IOU(M,Mgt), (13)
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with Igt representing the ground truth RGB images, Mgt

representing the ground truth masks. We further encourage
the first three channels of the feature map Icoarse to closely
match the ground-truth RGB image Igt by introducing an
L1 loss:

Lcoarse = ||Icoarse − Igt||1. (14)

The geometric deformation caused by expressions is
typically complex and cannot be learned through image
supervision alone. Therefore, we provide additional coarse
supervision for expression deformation learning using 3D
landmarks. Specifically, we define the 3D landmarks P0 in
the canonical space, and then predict their displacements
and transform them to the world space as P just like the
transformation of the original vertices V0 above. Then, we
construct the landmark loss function:

Llmk = ||P − Pgt||2, (15)

with Pgt denoting the ground truth 3D landmarks, which
are estimated by fitting a BFM model to the training data
during preprocessing.

Moreover, to guarantee the decoupling of identity defor-
mations and motion deformations learned by the model and
minimize redundancy, we introduce the following regular-
ization loss function that aims to minimize the magnitude
of motion deformations:

Lreg = ||δVexp||2 + ||δVnf ||2. (16)

During the training of the Guiding Geometry Model,
we also construct a Laplacian smooth term Llap to penalize
surface noise or breaks. Overall, the total loss function is
formulated as:

L =Lfine + λsilLsil + λcoarseLcoarse+ (17)
λlmkLlmk + λregLreg + λlapLlap (18)

with all the λ denoting the weights of each term. In practice,
we set λsil = 0.1, λcoarse = 0.1, λlmk = 0.1, λreg = 0.001
and λlap = 100. During training, we jointly optimize
the bolded variables above: {zid, Eexp(·), Enf (·), finj(·),
fmean(·), fid(·), fexp(·), fnf (·), fcol(·), Ψ(·), P0}. No-
tably, the defined canonical 3D landmarks P0 are initialized
by computing the average of the estimated 3D landmarks
from the training dataset.

During the training stage of the 3D Gaussian Parametric
Head Model, we also calculate the perceptual loss [78] to
encourage the model to learn more high-frequency details
Lvgg = V GG(Ifine, Igt). Similar to training the guiding
geometry model, we enforce the first three channels of
the feature map to be RGB channels as Eqn. 14, introduce
landmarks guidance terms as Eqn. 15 and the regular term
for the displacement of points as Eqn. 16. Consequently, the
overall loss function can be formulated as:

L =Lfine + λvggLvgg + λcoarseLcoarse+ (19)
λlmkLlmk + λregLreg (20)

with the weights λvgg = 0.1, λcoarse = 0.1, λlmk = 0.1 and
λreg = 0.001. In this training stage, we also jointly optimize
all the bolded variables and networks mentioned above,
including the overall mean positions and attributes of the
Gaussians and the 3D landmarks: {zid, Eexp(·), Enf (·),
finj(·), fid(·), fexp(·), fnf (·), fcol(·), fatt(·), Ψ(·), X0,
Γ0, S0, Q0, A0, P0}.

3.4 Training Details
Before training starts, we first initialize the identity codes
following NPHM [17]. For each different identity, we set a
different identity code with a dimension of 512. In addition,
we enforce a constraint to ensure that the norm of these
codes remains below 1.

Besides, we experimentally found that although it is
not necessary, jointly optimizing the head pose during the
training process can eliminate some minor errors generated
during the BFM calibration process, promoting the consis-
tency of the model as the codes change. Consequently, we
optimize all the head poses with a very small learning rate
1× 10−5 throughout the entire training stage of the model.

For the face image in the training process, we randomly
select the image of another view of the current frame, or
the synthesized image by LivePortrait [30] with the same
expression as the input.

Next, we give a brief description of the network struc-
ture. The each of the 2 encoders Eexp(·), Enf (·) consists of
4 convolution blocks plus an MLP. Each block contains a
convolutional layer with stride 1 and a convolutional layer
with stride 2. For the refine network Ψ(·), we adopt a very
simple U-net [79] structure, with 2 convolutional layer for
downsampling and 2 convolutional layers for upsampling.
For the MLPs fmean(·), fid(·), fexp(·), fnf (·), fcol(·),
fatt(·), we set the width to 512 with 4 hidden layers. And
for the injection MLP finj(·), we set the width to 512 with
8 hidden layers. The mesh and the Gaussians are both
rendered as 512-resolution feature maps and transferred
into 512-resolution RGB images through the refine network.

During training the guiding geometry model, we use
256-resolution tetrahedral grid for extracting the mesh via
DMTet. For the optimization, we use an Adam [80] opti-
mizer, and set the learning rate to 1 × 10−4 for the identity
codes zid, 1 × 10−4 for all the networks Eexp(·), Enf (·),
finj(·), fmean(·), fid(·), fexp(·), fnf (·), fcol(·), Ψ(·), and
1× 10−4 for the 3D landmarks P0. We use a batch size of 8,
with each batch containing 4 images of a specific expression
from a given identity. Training the guiding geometry model
requires 8 RTX4090 graphics cards and approximately 1 day.

While training the Gaussian model, we also use an Adam
optimizer and set the learning rate: 1× 10−5 for the identity
codes zid, 1 × 10−4 for all the networks Eexp(·), Enf (·),
fid(·), fexp(·), fnf (·), fcol(·), fatt(·), Ψ(·) and 1 × 10−4

for the 3D landmarks P0. For the mean Gaussian attributes,
we set the learning rates as: 1 × 10−5 for the positions
X0, 1 × 10−5 for the per-vertex feature Γ0, 3 × 10−5 for
the scale S0, 1 × 10−5 for the rotation Q0 and 1 × 10−4

for the opacity A0. We use a batch size of 8, with each
batch containing a single image. Following the training of
the guiding geometry model, we transfer its parameters to
the Gaussian model and continue training on 8 RTX4090
graphics cards for 7 days until convergence is achieved.

3.5 Head Avatar from a Monocular Video
Once we have trained the Gaussian Parametric Head Model,
one of the main applications is fast reconstruction for 3D
head avatars from monocular videos, or even from few-
shot or single-image inputs. Previous methods [3]–[5], [28],
[29] trained their model from scratch and used the 3DMM
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Fig. 4. The pipeline of head avatar reconstruction from monocular videos. First, we optimize the identity code zid to coarsely fit the GPHM model to
the input video. Then we directly finetune the 3D Gaussian attributes and the motion-related networks in the GPHM for a fine-grained head avatar.
The flame chart in the figure marks the parameters that need to be optimized.

expression coefficients as the driving signal. Therefore,
when training the model, sufficient data is required to
ensure generalization and reconstruction quality, and the
subsequent driving process requires tracking for the 3DMM
expression of the source actor. In contrast, we utilize the
well-learned generalizable prior model for both appearance
and expression to model head avatars. Specifically, we first
fit the GPHM to the input video to obtain a rough 3D
Gaussian model in a few iterations. Further, we just slightly
finetune the 3D Gaussian parameters and the refine network
to reconstruct a fine-grained Gaussian model. Our pipeline
achieves faster reconstruction and better rendering quality
while requiring less training data. In addition, as our frame-
work leverages a pretrained expression encoder for end-to-
end expression control, the head avatar can be animated
directly by a face image or video, without tracking for
3DMM expression. In the experiment, we also verified that
this expression control strategy shows better generalization
ability.

GPHM Fitting At this stage, we first optimize the iden-
tity code to obtain a coarsely fitting GPHM model. Given a
N frame monocular frontal portrait video, a set of few-shot
images, or even a single image input {In}, n ∈ {1, ..., N},
we first remove the background of the images, then de-
tect 2D landmarks for extracting face images {Inface}, n ∈
{1, ..., N}, non-face images {Innonface}, n ∈ {1, ..., N} and
estimating the head pose {Rn, Tn}, n ∈ {1, ..., N} in the
same way as the training data preprocessing described in
Section 3.1. Then, we randomly initialize a global identity
code zid and fit our GPHM to the input video by optimizing
the identity code. Specifically, in each iteration, we sample
one frame n and input the identity code zid, the face image
Inface and the non-face image Innonface to the GPHM to
generate 3D Gaussians {Xn, Cn, Sn, Qn, An} as described
above. We then render the feature map IF through ras-
terization with the first three channels as the coarse RGB
image Icoarse. Finally the feature map IF is transferred to
fine image Ifine through the refine network Ψ. For the loss
function, we use only photometric loss Lcoarse and Lfine

defined in Eqn. 19. We totally optimize the identity code
zid for 100 iterations with learning rate 1× 10−3.

Finetune 3D Gaussians In this stage, we further opti-
mize the Gaussian attributes to reconstruct a high-fidelity
identity-specific head avatar. First, we calculate the Gaus-
sians positions Xid = X0+δXid, the color and other Gaus-
sian attributes Cid, Sid, Qid, Aid as Eqn. 10 and Eqn. 11
using the identity code obtained in the GPHM fitting stage

and set them as optimizable variables. As the computations
are completed, we no longer need the networks finj(·),
fid(·), fcol(·), fatt(·) and the identity code. So they are
subsequently discarded for saving computational overhead.
Then, we consider modeling some identity-specific dynamic
details deriving from the color and Gaussian attributes
varying with the expression. Referring to the approach in
Gaussian Head Avatar [54], we introduce an additional tiny
MLP fdyn(·), which takes the facial expression code zexp

and the per-Gaussian feature γ as input and predicts the
offset of the variables {δC, δS, δQ, δA}. Finally, the opti-
mization process is the same as the GPHM Fitting stage.
In each iteration, one frame n is sampled, the face image
Inface and the non-face image Innonface are input to the
model and render the feature map IF which is transferred
to the fine image Ifine later. Finally, we construct the same
loss function as Eqn. 19. Typically, during finetuning, we
optimize the identity-specific Gaussians Xid, Cid, Sid, Qid,
Aid with learning rate 1 × 10−3 and the networks fexp(·),
Ψ(·), fdyn(·) with learning rate 3×10−4 for 2000 iterations.
But in the case of few-shot input, the optimization of the
facial expression MLP fexp(·) and refine network Ψ(·) is
optionally turned off to prevent overfitting and reduce the
number of iterations appropriately according to the number
of input images.

Reenactment Once the identity-specific head avatar is
reconstructed, we can use another portrait video for reenact-
ment. Given a frame of the driving video, we first estimate
the head pose and extract face image and non-face image
as training data preprocessing 3.1. Then, we feed the face
image to the facial expression encoder to generate the facial
expression code for expression controlling. Similarly, we
also feed the non-face image to the non-face motion encoder
to generate non-face motion code to control the neck and
shoulder motion when turning the head. Note, optionally
the control of the neck and below could be ignored by fixing
the non-face motion code as a sample in the training set.
Finally, we input two motion codes to the finetuned model
to generate 3D Gaussians, which is rendered into images.

4 EXPERIMENTS

4.1 Datasets

NeRSemble dataset contains over 260 different identities,
and collects 72fps multi-view videos from 16 synchronized
cameras for each identity. The combined video frames
for each identity range from approximately 6000 to 11000
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Fig. 5. We generate the head models with randomly sampled identity
codes and expression codes as conditions. Each row corresponds to
the same identity code, and each column corresponds to the same
expression code.

Fig. 6. We compare our initialization strategy with using the vertices of
FLAME model. The left side shows the rendered image, and the right
side shows the positions of the Gaussian points.

frames. For each identity video, we selected about 800
frames from all 16 views as training data.

NPHM dataset contains 5200 3D human head scans.
These scans come from 255 different identities, each with
about 20 different expressions. Since our method utilizes 2D
images as training supervision, we render each scan from 80
different views to generate synthetic image data and record
the camera parameters and the masks.

FaceVerse dataset is an East Asian human head scan
dataset. It contains 2310 scans from 110 different identities,
and each identity contains 21 expressions. We selected 1620
scan data of 80 identities for training. Similarly, for each
scan, we render multi-view synthetic image data from 80
different views and record the camera parameters and the
masks.

VFHQ dataset is a large-scale high-quality monocu-
lar video dataset, containing interviews and speeches of
various people, with a total of 15,000+ videos, each with
hundreds of frames. We removed some clips with poor
quality and poor background segmentation, and selected
6,000 videos for training our model.

4.2 Evaluation for Gaussian Parametric Model.
Disentanglement. We tested the performance of the 3D
Gaussian Parametric Model under the control of different
identity codes and different expression codes. We randomly
sampled 2 identity codes and 5 expression codes to generate
10 head models. Each horizontal row corresponds to the
same identity code, and each column corresponds to the
same expression code, as shown in Fig. 5. It can be observed
that our model performs well in identity consistency and
expression consistency, and the two components are fully
disentangled.

Ablation on Initialization. To evaluate the effectiveness
of our initialization strategy with guiding geometry model

Method PSNR ↑ SSIM ↑ LPIPS ↓
FLAME Initialization 25.7 0.82 0.109

Our Initialization 28.0 0.84 0.085
TABLE 1

Quantitative evaluation results of our initialization strategy and naive
FLAME initialization strategy.

Fig. 7. The comparison of the different representations with super-
resolution.

outlined in Section 3, we compare it against a FLAME-
based initialization strategy. To use FLAME model for the
initialization, we first fit a FLAME model to overall mean 3D
landmarks which are estimated during data preprocessing.
Then, we sample 100,000 points near the surface of the
FLAME mesh as an initialization of the mean Gaussian
positions X0. For the per-vertex features bound to each
point Γ, we just set them to zero. And for all the networks
{finj(·),fid(·),fexp(·),fcol(·),Ψ(·)} and fatt(·) are ran-
domly initialized as there is no available prior. The ini-
tialization process for the Gaussian attributes {S0,Q0,A0}
remains the same as in our strategy.

We show the visualization results in Fig. 6, with the
Gaussian model rendering image on the left and the Gaus-
sian positions displayed as point clouds on the right. Our
initialization strategy using the guiding geometry model
can ensure that all the Gaussian points fall evenly on the
actual surface of the model, thereby ensuring reconstruction
quality. When using the FLAME model for the initialization,
a large number of points wander inside or outside the actual
surface of the model, causing noise or redundancy and
leading the model to lose some high-frequency information
and making it difficult to fully converge. We also perform
a quantitative evaluation of different initialization strategies
on the rendered images, as shown in Table 1, which shows
that our method leads to better rendering results.

Ablation on Representation and Super Resolution. We
conduct the ablation study for the guiding mesh model, the
Gaussian model, and the super-resolution network (abbre-
viated as SR) as shown in Fig. 7. The corresponding PSNR
metrics are: Mesh (15.7), Mesh+SR (17.3), Gaussian (27.0),
Gaussian+SR (29.3). Compared to mesh, utilizing 3D Gaus-
sian as the representation brings significant improvements
(+12), while the super-resolution module adds some details,
generating more realistic results.

4.3 Applications: Head Avatar from a Monocular Video.
Self Reenactment. We conduct qualitative and quantita-
tive rendering quality comparisons between our method
and five other SOTA monocular head avatar reconstruction
methods on self reenactment task. Among them, Avatar-
MAV [3], NeRFBlendShape [4] and INSTA [5] utilize Voxel-
based representation for NeRF head avatar training accel-
eration. FlashAvatar [29] and SplattingAvatar [28] introduce
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Fig. 8. Qualitative comparison of our method and 5 other state-of-the-art methods on self reenactment task. From left to right: AvatarMAV [3],
NeRFBlendShape [4], INSTA [5], FlashAvatar [29], SplattingAvatar [28] and Ours.

Method PSNR ↑ SSIM ↑ LPIPS ↓
AvatarMAV 27.7 0.92 0.081

NeRFBlendShape 27.9 0.92 0.085
INSTA 27.5 0.92 0.076

FlashAvatar 28.8 0.93 0.051
SplattingAvatar 28.4 0.93 0.065

Ours (wo FT motion) 28.1 0.93 0.046
Ours (wo fdyn) 28.2 0.93 0.044

Ours 28.9 0.94 0.041
TABLE 2

Quantitative evaluation results on the task of self reenactment. We
compare our method with other 5 SOTA methods: AvatarMAV [3],

NeRFBlendShape [4], INSTA [5], FlashAvatar [29] and
SplattingAvatar [28]. And we also include two ablation baselines: Ours
(wo fdyn) in which we remove the dynamic generator fdyn, and Ours

(wo FT motion) in which we only optimize the 3D Gaussians but the
motion related networks.

3D Gaussians and bind them to a FLAME template to model
the head avatars. In the experiment, we input 1-minute
videos as training data and use additional 20-second videos
as evaluation data. And we train their models according
to the time claimed by each method. The training time of
our method is 5 minutes. The qualitative results are shown
in the Fig. 8. Our method is significantly better than other
methods in terms of rendering quality, expression transfer
accuracy and robustness. Table. 2 shows the quantitative
evaluation results. We evaluate these methods on three
metrics: Peak Signal-to-Noise Ratio (PSNR), Structure Sim-
ilarity Index (SSIM) and Learned Perceptual Image Patch
Similarity (LPIPS). Our method achieves the best results on
all the metrics and significantly outperforms other SOTA
methods on the LPIPS metric.

Cross-identity Reenactment. We also compare our
method with these state-of-the-art methods on the cross-

identity reenactment task. The qualitative results are shown
in Fig. 9. Other methods suffer from shape and expression
coupling because they use a 3DMM model to control their
avatars or use the 3DMM expression coefficient as a condi-
tion. As a result, the quality of the results is affected by the
different shapes when applying cross-identity reenactment.
Our method directly inputs the image into a well-decoupled
expression encoder which is trained on large-scale datasets
to extract latent expressions. Therefore, our method achieves
better performance on cross-identity reenactment tasks.

Ablation on Few-shot Input. Next, we conduct experi-
ments under the setting of few-shot input. We limit the num-
ber of input images to 100, 10, and 3 frames, and compare
our method with the state-of-the-art methods mentioned
above. The qualitative results are shown in Fig. 10. While
other methods suffer from blurring, artifacts and signifi-
cant quality degradation as the number of input images
decreases, our method can achieve robust and high-quality
avatar reconstruction. Even when inputting only one single
image, our method can still guarantee robust and high-
quality results as shown in Fig. 11.

Ablation on Utilizing Synthesized Expression Condi-
tion Images.

As explained in Sec. 3.1 and Sec. 3.4, for the images input
to the facial expression encoder, we utilize LivePortrait [30]
to generate additional expression condition images. This
strategy forces the encoder to learn only expression infor-
mation from the input images, thereby achieving expression
and appearance decoupling. We also construct an ablation
baseline, in which we train the GPHM model using only
the groundtruth images as the expression condition and the
results are shown in Fig. 12. Without utilizing the additional
expression condition images, the expression encoder leaks
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Fig. 9. Qualitative comparison of our method and 5 other state-of-the-art methods on cross-identity reenactment task. From left to right:
AvatarMAV [3], NeRFBlendShape [4], INSTA [5], FlashAvatar [29], SplattingAvatar [28] and Ours.

Fig. 10. We qualitatively compare our method with 5 other state-of-the-art methods on self reenactment tasks in the 100-shot, 10-shot, and 3-shot
cases from top to bottom. The methods are AvatarMAV [3], NeRFBlendShape [4], INSTA [5], FlashAvatar [29], SplattingAvatar [28] and Ours from
left to right.

Fig. 11. The head avatar reconstruction result of our method when only
one single image is used as input.

appearance-related information to the motion networks,
causing the reconstructed head avatar to still be heavily
affected by the actor’s appearance during cross-identity
reenactment.

Fig. 12. We use synthesized images via LivePortrait to train our expres-
sion encoder for expression and appearance decoupling.

4.4 Applications: Image Fitting.

In this section, we demonstrate the capability of our 3D
Gaussian Parametric Model for single-image fitting using
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Fig. 13. We compare our method with other SOTA methods on the task of single image fitting. The far left is the input image, and to the right are
Our method, HeadNeRF [21], MoFaNeRF [20] and PanoHead [45]. Our model significantly outperforms other methods in reconstruction quality and
3D consistency.

the fitting strategy detailed in Section 3.5. We compare
our model with similar works: HeadNeRF [21], MoFaN-
eRF [20], and PanoHead [45]. In addition to evaluating the
above methods on our evaluation dataset, we also conduct
comparisons using cases from MEAD [81] dataset (the first
two rows). The qualitative results are presented in Fig. 13.
Our model exhibits reconstruction accuracy while main-
taining excellent 3D consistency and identity preservation.
HeadNeRF’s fitting results often suffer from missing hair,
and they remove the body and neck. MoFaNeRF, trained
solely on the FaceScape dataset where all subjects wear hats,
struggles to fit hair. As a GAN-based model, PanoHead can
achieve highly accurate reproductions from the input view.
However, due to overfitting, the results from side views
reveal poor 3D consistency and identity preservation.

In addition to qualitative evaluations, we also conducted
quantitative evaluations on 60 images using three metrics:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), and Face Distance (FD). Here, we provide
a brief explanation of the Face Distance (FD). To compute
the FD metric, we utilized a face recognition tool 1 to
encode two images containing faces into 128-dimensional
vectors. Subsequently, we calculated the distance between
these two vectors to reflect the similarity of the two faces.
In our experiments, FD serves as an indicator of identity
consistency. The results are shown in Table 3. Our model
demonstrates optimal performance in both fitting accuracy
and identity consistency.

Our 3D Gaussian Parametric Head Model possesses
the capability for expression editing. Upon completing the

1. https://github.com/ageitgey/face recognition

Method PSNR ↑ SSIM ↑ FD ↓
HeadNeRF 28.9 0.84 0.37
MoFaNeRF 28.6 0.82 0.37
PanoHead 29.1 0.86 0.41

Ours 30.3 0.86 0.35
TABLE 3

Quantitative evaluation results on the task of single image fitting. We
compare our method with other 3 SOTA methods: HeadNeRF [21],

MoFaNeRF [20], PanoHead [45].

fitting process on a portrait image, we can animate the
model by applying different expression codes. An example
is illustrated in Figure 14. Our model can generate images
depicting the corresponding expressions of the input subject
based on a reference expression (as seen in the lower left
corner of each image in the figure). It performs admirably
even with exaggerated expressions, producing natural and
realistic results.

5 DISCUSSION

Ethical Considerations. Our technique can generate artifi-
cial portrait videos, posing a significant risk of spreading
misinformation, shaping public opinions, and undermin-
ing trust in media outlets. These consequences could have
profound negative effects on society. Therefore, it is crucial
to explore methods that effectively differentiate between
genuine and manipulated content.
Limitation. Our 3D Gaussian Parametric Head Model takes
a step forward in the characterization of parametric head
models. However, due to the limited amount of training
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Fig. 14. We perform expression editing on the head model reconstructed from the input image. Our model is able to handle very exaggerated
expressions with superior identity consistency.

data, the generalization ability of the model is still insuf-
ficient. In some cases where the illumination is significantly
different from the training set, the reconstruction results are
not good.
Conclusion. In this paper, we propose the 3D Gaussian
Parametric Head Model, a novel framework for paramet-
ric head model. This model leverages the power of 3D
Gaussians, enabling realistic rendering quality and real-time
speed. Our well-designed training strategy ensures stable
convergence while enabling the model to learn appearance
details and expressions. Besides, our model allows for cre-
ating detailed, high-quality face avatars from a single input
image, and also enables editing for expressions and identity.
We believe our model represents a significant advancement
in the field of parametric head model.
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